Strong anisotropic thermal conductivity of nanoporous silicon

نویسندگان

  • Kyowon Kim
  • Thomas E. Murphy
چکیده

Nanoporous silicon is known to have a thermal conductivity that is orders of magnitude smaller than the bulk crystalline silicon from which it is formed. Even though the strong columnar microscopic structure of porous silicon indicates the possibility of highly anisotropic thermal properties, there have been no measurements. We report here an experimental investigation of this anisotropy. An analytical heat spreading model with 3x thermal conductivity measurement method was used to derive both in-plane and cross-plane conductivities. Additionally, we describe a finite element analysis that supports the experimental measurements. Our measurements reveal that because of the nanoscale columnar nature of the material, the in-plane thermal conductivity of nanoporous silicon is 1–2 orders of magnitude smaller than the cross-plane thermal conductivity and 2–3 orders of magnitude smaller than that of crystalline silicon, making it comparable to the best thermal insulators available. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4933176]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical and Thermal Properties of Nanoporous Material and Devices

Title of dissertation: OPTICAL AND THERMAL PROPERTIES OF NANOPOROUS MATERIAL AND DEVICES Kyowon Kim, Doctor of Philosophy, 2015 Dissertation directed by: Professor Thomas E. Murphy Dept. of Electrical & Computer Engineering In this thesis, we investigate the optical and thermal properties of porous silicon and its applications. In first part, porous silicon’s optical properties and application ...

متن کامل

Scaling laws for thermal conductivity of crystalline nanoporous silicon based on molecular dynamics simulations

This study establishes that the effective thermal conductivity keff of crystalline nanoporous silicon is strongly affected not only by the porosity fv and the system’s length Lz but also by the pore interfacial area concentration Ai. The thermal conductivity of crystalline nanoporous silicon was predicted using non-equilibrium molecular dynamics simulations. The Stillinger-Weber potential for s...

متن کامل

Molecular Dynamics Simulation of Thermal Conduction in Nanoporous Thin Films

Molecular dynamics simulations of thermal conduction in nanoporous thin films are performed. Thermal conductivity displays an inverse temperature dependence for films with small pores and a much less pronounced dependence for larger pores. Increasing porosity reduces thermal conductivity, while pore shape has little effect except in the most anisotropic cases. The pores separate the film into l...

متن کامل

Temperature-dependent thermal conductivity in silicon nanostructured materials studied by the Boltzmann transport equation

Nanostructured materials exhibit low thermal conductivity because of the additional scattering due to phononboundary interactions. As these interactions are highly sensitive to the mean free path (MFP) of phonons, MFP distributions in nanostructures can be dramatically distorted relative to bulk. Here we calculate the MFP distribution in periodic nanoporous Si for different temperatures, using ...

متن کامل

Directional Phonon Suppression Function as a Tool for the Identification of Ultralow Thermal Conductivity Materials

Boundary-engineering in nanostructures has the potential to dramatically impact the development of materials for high- efficiency conversion of thermal energy directly into electricity. In particular, nanostructuring of semiconductors can lead to strong suppression of heat transport with little degradation of electrical conductivity. Although this combination of material properties is promising...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015